Schubert Patches Degenerate to Subword Complexes

نویسندگان

  • ALLEN KNUTSON
  • Shrawan Kumar
چکیده

We study the intersections of general Schubert varieties Xw with permuted big cells, and give an inductive degeneration of each such “Schubert patch” to a StanleyReisner scheme. Similar results had been known for Schubert patches in various types of Grassmannians. Wemaintain reducedness using the results of [Knutson 2007] on automatically reduced degenerations, or throughmore standard cohomology-vanishing arguments. The underlying simplicial complex of the Stanley-Reisner scheme is a subword complex, as introduced for slightly different purposes in [Knutson-Miller 2004], and is homeomorphic to a ball. This gives a new proof of the Andersen-Jantzen-Soergel/Billey and Graham/Willems formulae for restrictions of equivariant Schubert classes to fixed points.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subword complexes, cluster complexes, and generalized multi-associahedra

In this paper, we use subword complexes to provide a uniform approach to finite-type cluster complexes and multi-associahedra. We introduce, for any finite Coxeter group and any nonnegative integer k, a spherical subword complex called multi-cluster complex. For k = 1, we show that this subword complex is isomorphic to the cluster complex of the given type. We show that multi-cluster complexes ...

متن کامل

Brick Polytopes of Spherical Subword Complexes and Generalized Associahedra

We generalize the brick polytope of V. Pilaud and F. Santos to spherical subword complexes for finite Coxeter groups. This construction provides polytopal realizations for a certain class of subword complexes containing all cluster complexes of finite types. For the latter, the brick polytopes turn out to coincide with the known realizations of generalized associahedra, thus opening new perspec...

متن کامل

Brick Polytopes of Spherical Subword Complexes: a New Approach to Generalized Associahedra

We generalize the brick polytope of V. Pilaud and F. Santos to spherical subword complexes for finite Coxeter groups. This construction provides polytopal realizations for a certain class of subword complexes containing all cluster complexes of finite types. For the latter, the brick polytopes turn out to coincide with the known realizations of generalized associahedra, thus opening new perspec...

متن کامل

Schubert Varieties, Subword Complexes, Frobenius Splitting, and Bruhat Atlases

We consider stratifications of schemes by subvarieties, and introduce the notion of a stratification generated by a collection of (reduced) subschemes. We recall some basics of Gröbner degenerations (just for lex order) and Stanley-Reisner theory. We then state the main theorem, that the lex init of a Kazhdan-Lusztig variety in BottSamelson coördinates is the Stanley-Reisner scheme of a subword...

متن کامل

Involution Subword Complexes in Coxeter Groups

Let (W,S) be a Coxeter system. An element in W and an ordered list of elements in S give us a subword complex, as defined by Knutson and Miller. We define the “fish product” between an involution in W and a generator in S, which is also discussed by Hultman. This “fish product” always produces an involution. The structure of the involution subword complex ∆̂(Q,w) behaves very similarly to the re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008